翻訳と辞書
Words near each other
・ Jónas Guðni Sævarsson
・ Jónas Hallgrímsson
・ Jónas Jónsson
・ Jónas Kristjánsson
・ Jónas Sen
・ Jónas Sigurðsson
・ Jónas Tór Næs
・ Jónasson
・ Jónhard Frederiksberg
・ Jónsdóttir
・ Jónsi
・ Jónsi & Alex
・ Jónsmessa
・ Jónsson
・ Jónsson cardinal
Jónsson function
・ Jónsson–Tarski algebra
・ Jónína Bjartmarz
・ Jónína Leósdóttir
・ Jónína Rós Guðmundsdóttir
・ Jórunn skáldmær
・ Jórunn Viðar
・ Jósika Castle
・ Jóska Sobri
・ Jósvafő
・ Jószef Svidró
・ Jóvenes Clásicos del Son
・ Jóvito Villalba
・ Józef Abelewicz
・ Józef Achilles Puchała


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Jónsson function : ウィキペディア英語版
Jónsson function
In mathematical set theory, an ω-Jónsson function for a set ''x'' of ordinals is a function f:()^\omega\to x with the property that, for any subset ''y'' of ''x'' with the same cardinality as ''x'', the restriction of f to ()^\omega is surjective on x. Here ()^\omega denotes the set of strictly increasing sequences of members of x, or equivalently the family of subsets of x with order type \omega, using a standard notation for the family of subsets with a given order type. Jónsson functions are named for Bjarni Jónsson.
showed that for every ordinal λ there is an ω-Jónsson function for λ.
Kunen's proof of Kunen's inconsistency theorem uses a Jónsson function for cardinals λ such that 2λ = λ0, and Kunen observed that for this special case there is a simpler proof of the existence of Jónsson functions. gave a simple proof for the general case.
The existence of Jónsson functions shows that for any cardinal there is an algebra with an infinitary operation that has no proper subalgebras of the same cardinality. In particular if infinitary operations are allowed then an analogue of Jónsson algebras exists in any cardinality, so there are no infinitary analogues of Jónsson cardinals.
==References==

*
*
*
*

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Jónsson function」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.